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The decay of two-dimensional, homogeneous, isotropic, incompressible turbulence 
is investigated both by means of numerical simulation (in spectral as well as in 
grid-point form), and theoretically by use of the direct-interaction approximation 
and the test-field model. The calculations cover the range of Reynolds numbers 
50 6 R, < 100. Comparison of spectral methods with finite-difference methods 
shows that one of the former with a given resolution is equivalent in accuracy to 
one of the latter with twice the resolution. The numerical simulations a t  the 
larger Reynolds numbers suggest that earlier reported simulations cannot be 
used in testing inertial-range theories. However, the large-scale features of the 
flow field appear to be remarkably independent of Reynolds number. 

The direct-interaction approximation is in satisfactory agreement with 
simulations in the energy-containing range, but grossly underestimates 
enstrophy transfer at high wavenumbers. The latter failing is traced to an 
inability to distinguish between convection and intrinsic distortion of small 
parcels of fluid. The test-field model on the other hand appears to be in excellent 
agreement with simulations at all wavenumbers, and for all Reynolds numbers 
investigated. 

1. Introduction 
This paper compares theory and computer experiments on the decay of two- 

dimensional, homogeneous, isotropic, incompressible turbulence. Two analytical 
theories are studied: (i) the direct-interaction approximation (Kraichnan 1959) 
and (ii) the test-field model (Kraichnan 1971a,b; Leith & Kraichnan 1972). 
Numerical solutions for the Navier-Stokes equations are obtained by a variety 
of accurate methods. Most of the comparisons are made with results obtained by 
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spectral (Fourier) decomposition of the velocity field (Orszag 1971), a method 
particularly well suited for comparisons with theories like the direct-interaction 
approximation and test-field model whose form is simplest in the spectral domain. 
We compare numerical and theoretical results for the evolution of energy and 
enstrophy (mean-square vorticity) spectra and transfer spectra, as well as 
spectral integrals like dissipation rates of energy and enstrophy and two- 
dimensional skewness factors. The present results extend to two dimensions the 
three-dimensional results of Orszag & Patterson (1972) and Herring et al. (1973). 
I n  a subsequent paper, we plan to examine the error growth problem in two 
dimensions, again comparing theory and numerical experiment. 

The relevance of idealized two-dimensional turbulence to certain aspects of 
atmospheric motion has been emphasized in much recent work. Lilly (1971, 
1972 a, b )  summarizes previous work and relates two-dimensional turbulence to 
three-dimensional quasi-geostrophic turbulence, the latter being more closely 
related to atmospheric dynamics (Charney 1971). The goal of the ;resent work 
is not to pursue these important analogies further, but rather it is to obtain 
estimates of the accuracy of turbulence theories, as well as to obtain reliable data 
on two-dimensional turbulence in a range of moderate Reynolds numbers. In  
this paper, we concentrate on the problem of the decay of turbulence in the 
absence of external forces, deferring consideration of steady-state turbulence to 
future work. 

The direct-interaction approximation and test-field model are particularly 
important turbulence models because of their generality, as compared with more 
ad hoc theories like that of Heisenberg (1948). Both the direct-interaction approxi- 
mation and test-field model apply to a variety of turbulent flows, including homo- 
geneous, shear, and thermal turbulence. [The generalization of the test-field model 
to inhomogeneous flows has recently been given by Kraichnan (1973).] Of the two 
theories, the direct-interaction approximation has a sounder logical foundation, 
as it employs a generalized eddy viscosity which is self-consistently computed in 
terms of the turbulence energy spectrum with no empirical constants (Herring & 
Kraichnan 1972; Orszag 1974). The direct-interaction approximation has a well- 
known defect in treating the interaction of small scales with large scales, viz. the 
failure of the theory to behave invariantly under random Galilean transformations 
(Kraichnan 1964). This difficulty leads in three dimensions to the prediction 
by the direct-interaction approximation of a k-% inertial-range energy spectrum, 
instead of the k-4 Kolmogorov spectrum. I n  two dimensions, the direct-interac- 
tion approximation leads to a k-% enstrophy-cascade inertial range instead of the 
more widely accepted (but still controversial) k3 range. While the inertial-range 
defect of the direct-interaction approximation is only k i  in three dimensions, it is 
Id in two dimensions. The numerical results reported in this paper provided some 
further support for the conclusion that the direct-interaction approximation 
describes the inertial range worse in two dimensions than in three. 

The test-field model is designed to give the proper invariance under random 
Galilean transformations. The memory times for dynamical interactions in the 
test-field model are based on the time for loss of coherence of the pressure 
fluctuations acting on fluid elements. There is a single adjustable parameter A ,  
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of order one, which affects memory times and, hence, the results of the test-field 
model. If h = 0, the test-field model reduces to the Markovian quasi-normal 
theory (Orszag 1970), while if h = oc) nonlinear effects vanish and the turbulence 
executes pure viscous decay, For three-dimensional flow, a h in the range 1-1.5 
appears to give the best comparison with numerical simulations (Herring & 
Kraichnan 1972). 

Two goals of the present paper emerge from the above discussion. (i) Does the 
inertial-range inadequacy of the direct-interaction approximation imply un- 
satisfactory predictions of the evolution of the energy-containing region of the 
spectrum in two dimensions? (ii) What is the best choice for h in the two-dimen- 
sional test-field model? 

As mentioned earlier, we believe our numerical simulations to be a reliable 
source of data on moderate Reynolds number two-dimensional turbulence. An 
important question is whether large Reynolds number flows with inertial ranges 
can be realistically simulated with computers a t  present available. We examine 
this question in $4 and conclude that the present simulations do not have 
sufficient resolution to simulate properly an inertial range. It is concluded that 
earlier reports of Ic-3 inertial-range spectra (Lilly 1971, 1972a, b )  and kP4 inertial- 
range spectra (Deem & Zabusky 1971) were premature. However, our conclusions 
for numerical simulations are not all negative. We have observed a strong degree 
of Reynolds number independence in the structure of large eddies. Apparently, 
if one is interested only in the dynamics of enstrophy-containing eddies a t  large 
Reynolds numbers, one may get reliable results by simulating the large eddies at 
moderate Reynolds numbers. This has important consequences for future 
numerical simulations of turbulence and is discussed a t  more length later. 

In  $ 2, we introduce some notation and concepts useful for the description of 
two-dimensional turbulence. I n  9 3, we judge the accuracy of various numerical 
solutions to the two-dimensional Navier-Stokes equations. I n  3 4, we infer what 
information can be reliably obtained about high Reynolds number turbulence 
from the present moderate-resolution numerical experiments. I n  3 5 ,  the mathe- 
matical formalism of the direct-interaction approximation and test-field model is 
explained, while in $3 6 and 7 we compare the results of the numerical simulations 
with the theories and give an interpretation of the theoretical significance of the 
comparisons. 

Our results indicate that the direct-interaction approximation satisfactorily 
predicts the evolution of the energy spectrum a t  moderate Reynolds numbers. 
At the highest Reynolds number investigated, the accuracy of the direct- 
interaction approximation for the energy spectrum and energy-transfer spectrum 
is inferior to that of the test-field model. For both large and small Reynolds 
numbers, the direct-interaction approximation gives poor results in the enstrophy 
dissipation region, as may be expected because of its prediction of an incorrect 
enstrophy-transfer inertial-range power law. The enstrophy transfer to higher 
wavenumbers is grossly underestimated by the direct-interaction approximation. 
An analogous difficulty has been observed in energy transfer in three-dimensional 
turbulence (Herring et al. 1973) and the theoretical explanation for it is similar 
in two dimensions. 

27-2 



420 J .  R. Herring, 8. A .  Orszag, R. H .  Kraichnan and D.  G .  Pox 

The energy spectrum given by the test-field model with h = 1 is in excellent 
agreement with the present simulations, both at high and low Reynolds numbers. 
The results are not too sensitive to the value of A ,  and satisfactory speotra are 
obtained with h ranging from 0.65 to 1, the large wavenumber region being better 
matched by smaller values of h than the energy-containing region. 

With regard to numerical simulations, our results show that fixed-resolution 
experiments become inaccurate as the Reynolds number increases. The spectral 
simulations do not suddenly become inaccurate at  all scales; rather, more and 
more small scales get treated inaccurately with increasing Reynolds number. 
Enstrophy-containing large-scale motions are treated accurately even at 
Reynolds numbers two or three times larger than the highest that can be con- 
fidently expected to give accurate simulations at  all scales. Even more important, 
our results show a strong degree of Reynolds number independence, as discussed 
above and in $4. 

2. Formalism and elementary concepts 

field may be expanded in the Fourier series 
The flow is assumed to be confined in a cyclic box of side D so that the velocity 

v(x) = Z u ( k )  eik.=, ( 2 . 1 )  

where the sum extends over wave vectors whose components are integral 
multiples of 2n/D. In  this case the incompressible Navier-Stokes equations 
become ( a / a t + ~ k ' ) u ~ ( k )  = -ikm(&- kiki/k2) C uj(p)u,(q), 

p+q=k 

where k = (kl, v is the kinematic viscosity and incompressibility requires 
ks,ui(k) = 0 for all k.  In  the limit D + a, which is necessary for strict isotropy,' 

(2 .3)  

where angular brackets denote an ensemble average and the mean kinetic energy 

IOw E(k)  dk. 
per unit mass is 

U(k)  measures the intensity of excitation per mode. The energy balance equationis 

E(k,  t )  = n k U ( k ,  t ,  t ) ,  U ( k ,  t ,  t ' )  = lim ( D / 2 ~ ) ~ ( u & k ,  t)ui( - k, t ' ) ) ,  
D+m 

(a/at+ 2vk2) E ( k )  = T ( k ) ,  T ( k )  = - ; IomJ; T ( k ,  P, a )  dPd% (2 .4)  

where WGP, n)  = x Im (ui( - k )  uj(p) u.,(q)) (k  = P + 91, ( 2 . 5 )  
(4nkiisin (P, q)i) ( w w 4  ( k m ~ i i  + kj dim) 1 0 (if k, p ,  q cannot be the sides of a triangle). 

The trigonometrical factor in (2 .5 )  arises from the conversion of a two-dimensional 
integral over wave vectors p with q = k - p into a d p d q  integral over the lengths 
of the sides p and q of the triangles formed with k.  

Detailed conservation of energy and enstrophy for each triad interaction is 
expressed by 

(2 .6 )  
T ( k ,  p ,  q)  + T(P,  q, k) + T ( q ,  k, P) = 0, 

k 2 T ( k , p ,  q )  + p'T(p, q, k) + q2T(q ,  k, P) = 0, 
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which follows from (2.5) by incompressibility. It follows from (2.4) and (2.6) that 

dZ/dt = - 2 ~ 5 1  E - D ,  dO/dt = -7, (2.7) 

where C = som E(k)  dk,  51 = 1; kZE(k) dk, = 2~~~~ k4E(k) dk (2.8) 

are the total energy, enstrophy and enstrophy dissipation rate, respectively, 
and D is the energy dissipation rate. In  terms of physical-space quantities, 

x = *( lV12) ,  51 = $ ( l V X V 1 2 ) ,  7 = U ( l V X ( V X V ) 1 2 ) .  

It is also useful to introduce certain length scales and non-dimensional para- 
meters of the flow, following in part Lilly (1971). First, the large-scale Reynolds 
number R, is defined by 

The length scale associated with (2.9) is 

L = IlkL = C*/$, (2.10) 

which may be interpreted as an integral length scale characteristic of the eddies 
contributing to total enstrophy. 

Second, we define a microscale and associated Reynolds number for two- 
dimensional turbulence, in analogy with the corresponding three-dimensional 
definitions, as (2.11) 

Rl = (151*)1/~ = !2#/7 (2.12) 

respectively. The enstrophy dissipation wavenumber (analogous to the Kolmo- 
gorov dissipation wavenumber scale in three dimensions) is 

k, = (?p)Q. (2.13) 

The qualitative theory of the two-dimensional k3 enstrophy-cascade inertial 
range suggests that k4E(k) decays rapidly to zero for k& k,. Since the enstrophy 
dissipation spectrum k4E(k) behaves like k in the inertial range, the scales of 
motion that contribute to the enstrophy dissipation rate 7, and hence the overall 
enstrophy dynamics, are k 5 k,. The modes with k 3 k, have no important effect 
on modes with k 5 k,, so that two-dimensional turbulence can be looked upon as 
a closed dynamical system with appreciable excitation only over the spectral 
range 0 < k 5 k,. This is the two-dimensional analogue of the fact that three- 
dimensional turbulence can be considered a closed dynamical system with 
appreciable excitation only over wavenumbers up to the Kolmogorov dissipation 
wavenumber. 

Two-dimensional turbulence differs essentially from three-dimensional turbu- 
lence. In  two dimensions, the second conservation law (2.7) implies that enstrophy 
cannot be created by nonlinear effects, only destroyed by viscosity. Consequently, 
the rate of energy dissipation in decaying two-dimensional turbulence is bounded 
by its initial value for all times, since the energy dissipation rate is simply 2uQ. 
On the other hand, in three dimensions enstrophy can be produced by stretching 
of vortex lines, a process prohibited in two dimensions. The quantity that is 
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properly analogous to energy dissipation in three dimensions is the enstrophy 
dissipation in two dimensions. The mean-square vorticity gradient can be 
increased by nonlinearity in two dimensions, giving rise to enhanced turbulent 
dissipation of enstrophy. 

A two-dimensional skewness factor S, can be introduced as a non-dimensional 
measure of the rate of production of mean-square vorticity gradients by non- 
linearity. An appropriate definition is 

S, = ~ o m k 4 ~ ( k ) d k / [ ~ ~ ~ k 4 E ( k ) d k ( ~ ~ ~ k 2 E ( k ) d k ) ~ ] .  (2.14) 

S, is related to physical-space quantities by 

(2.15) 

where [ = av2/ax-av,/ay is the vorticity. The result (2.15) follows from (2.14), 
with the use of incompressibility, homogeneity and especially isotropy. Note that 
the usual (three-dimensional) skewness X = - ( ( a~~ /ax )~) / ( av , / ax )~ )~  vanishes in 
two dimensions, as follows from incompressibility and isotropy or from the 
proportionality of X to the rate of production of energy dissipation (enstrophy) 
by nonlinearity. 

Finally, it is useful to introduce two other parameters which are related to the 
energy transfer T ( k ) .  These are measures of the back transfer of energy to smaller 
wavenumbers and the transfer of enstrophy to larger wavenumbers. As a measure 
of back transfer, we take 

TB = jok*T(k)dk (2.16) 

and for forward enstrophy transfer we take 
r m  

r F  = J k2T(k)dk .  
ki 

(2.17) 

I n  (2.16), k8 is the smallest positive zero of T(k)  and, in (2.17), k, is the largest 
finite zero of T ( k ) .  At large R,, rB(t) represents nearly all the energy transferred 
out of the energy-containing region, the amount transferred to larger wave- 
numbers becoming vanishingly small as RL -+ co. Similarly, rF(t) represents, as 
RL -+ m, progressively more of the enstrophy transferred out of the enstrophy- 
containing region. As a dimensionless measure of back transfer we take nB/2vQ; 
a dimensionless measure of the forward enstrophy transfer is nF/r. 

3. Accuracy of numerical simulations 
In  two dimensions, it is convenient to solve the Navier-Stokes equations in 

terms of the vorticity and stream function. With the stream function @(x, y, t )  
related to the velocity by v = (a+/ay, -a@/ax) and to the (z  oomponent of) 
vorticity by [(x, y, t)  = av,/ax - avl/ay, the dynamical equations are 

ayat  = a(+, c)la(x, Y)  + VV2L (3.1) 

= - V2@, (3.2) 
where a( f, g)/a(x, y) denotes the Jacobian off and g with respect to x and y. 
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We have solved (3.1) and (3.2) numerically both by spectral methods and by 
more conventional finite-difference methods. The spectral method is documented 
elsewhere (Orszag 1971) ; it involves Fourier-series decomposition of @ and {as in 
(2.1) with the series truncated after a finite number of terms. The spectral 
equations for the Fourier coefficients are derived by a projection method like 
Galerkin’s; the resulting equations are analogous to (2.2) in the sense that they 
involve truncated convolution sums over the wave vectors. These convolutions 
are most efficiently evaluated using variants of the convolution theorem and fast 
Fourier transforms. The particular form of the algorithms used for the calculations 
reported here involves calculation of alias-free convolution sums in ten Fourier 
transforms per time step as described by Orszag (1971, 96). An alternative 
algorithm is given by the pseudo-spectral method (Fox & Orszag 1973a), wherein 
only five Fourier transforms need be performed per time step but aliasing 
interactions are not removed. We recommend that future spectral calculations 
be done by the latter, pseudo-spectral method, since it is a t  least twice as 
efficient as other spectral methods while giving similar accuracy for similar 
resolution. 

In  our comparisons with finite-difference schemes, we used the second-order 
Arakawa (1966) approximation to the Jacobian in (3.1). Both the Arakawa 
scheme and the spectral (alias-free) scheme conserve momentum, kinetic energy 
and enstrophy in the absence of viscous dissipation and time-differencing errors. 
I n  all comparisons, time differencing was done by the leapfrog method for the 
Jacobian term and by lagged explicit differences for the viscous term. Time steps 
were taken sufficiently small that time-differencing errors may be considered 
negligible. I n  the spectral results reported in later sections, the treatment of the 
viscous term was improved by use of Crank-Nicolson implicit differencing. 

We consider the results obtained from 12 different computer runs in order to 
understand the accuracy and limitations of the various numerical approximations 
to (3.1) and (3.2). All the runs start from precisely the same initial conditions: 
a fixed pseudo-random number generator is used to construct a realization of a 
Gaussian ensemble of two-dimensional incompressible flows with isotropic 
energy spectrum 

(3.3) 
where vo = I and k, = 8. The flow is assumed periodic within a square of side 27~. 
The 12 runs differ only in the viscosity, resolution (number of grid points or 
modes) and the numerical method (spectral or finite difference). Three choices 
are made for the viscosity, v = 0.005, 0.0025 or 0-001; two choices are made for 
the resolution, either 128 x 128 or 64 x 64 (grid points or independent real modes); 
and two numerical schemes are used, the spectral method and the Arakawa 
difference scheme. We label the runs so that F64 is a finite-difference run with 
64 x 64 resolution, while 8128 is a spectral run with 128 x 128 resolution, etc. 
These run labels relate to the number of independent degrees of freedom in each 
space direction, not the spectral cut-off wavenumber. The latter is obtained by 
recalling that an N x N resolution of v in physical space ( N  independent degrees 
of freedom in each space direction) is completely equivalent to a Fourier repre- 
sentation of v including all k with I k, I < - 1 and I k,l < qN - I.  Thus the 

E(k,  t = 0) = v;(k/k,) exp ( - h/h,), 
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FIGURE 1. Plot of k4E(k )  ws. k at  t = 2 ,  for computer experiment described in 3 3 of text. 
(a) Spectral method with ( 128)2 independent wavenumbers (called 8128) and cut-off wave- 
number k ,  = 63. ( b )  Spectral method with (64)2 wavenumbers (called 864) and k, = 31. 
(c) Arakawa difference scheme with (128)2 grid points (called P128). (d) Arakawa difference 
scheme with (64)2 points (called P64).  Initial energy spectrum is given by (3.3), v = 0.005 
and initial integral-scale Reynolds number RL(O) = 138. 

spectral cut-off kmax of S128 and 3 1 2 8  is kmax = 63 and, for S64 and F64, 
kma, = 31. For technical details, see Orszag (1971). 

In  figure 1, we show plots of the enstrophy dissipation spectra k4E(k)  vs. k for 
the runs with Y = 0.005 at t = 2, which is well into the evolution of this flow. We 
consider the enstrophy dissipation spectrum because, as argued in $2,  it is the 
critical spectrum that determines whether all dynamically important scales are 
resolved. In  order to simulate properly the nonlinear dynamics of two-dimensional 
turbulence, it  is necessary to resolve all scales of motion that make appreciable 
contributions to the enstrophy dissipation rate 7. The analogous condition in three 
dimensions is the resolution of all scales that contribute to the energy dissipation 
rate (enstrophy). In  the limiting case where Y + 0 but the spatial resolution 
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remains fixed, 7 cannot be properly resolved; in this case, the simulation is that 
of the approach of a conservative dynamical system to statistical mechanical 
equilibrium, as shown by Fox & Orszag (1  973 b) .  In  order to be assured a priori 
that a numerical simulation is more faithful to real turbulence than to one of the 
latter inviscid equipartition states, it  is necessary to demand adequate spectral 
resolution of 7. 

Returning to the results plotted in figure I, we see that all four runs have 
adequate resolution for this case, according to the criterion that all scales that can 
contribute appreciably to IOw k4E(k) d k  

be resolved. However, the differences between the four spectra are noteworthy. 
In  the spectral range 1 < k < 25, S64 and S128 arevirtually identical. Differences 
in the details of the flows obtained spectrally by S64 and S128 are evident on con- 
sidering the vorticity contours shown in figure 2. The only discrepancies between 
8128 (figure 2a) and 864 (figure 2 b )  are in the very smallest scales. The truncation 
from 128 x 128 modes to 64 x 64 modes has done nothing more than affect the 
flow in the scales in the immediate vicinity of the spectral cut-off. 

Comparison of F128 (figure 1 c )  with S 128 (figure 1 a )  shows spectral differences 
that are numerically evident for k > 5 ;  the qualitative features of the spectrum 
are changed for k > 10. The spectral results for F64 shown in figure 1 ( d )  suggest 
numerical inaccuracy for k > 3. These results are substantiated by examination 
of the vorticity contours shown in figure 2. Although figure 2(b) is somewhat 
‘choppy’ the location and intensity of flow features on scales larger than about 
4 grid intervals are nearly identical to those in figure 2(a) .  The contours of 
figure 2 ( c )  for F128 do not follow those of XI28 as strongly, although the large- 
scale features and some of the small-scale features bear good qualitative 
resemblance. The contours of figure 2 ( d )  for F64 do not follow those of any of the 
other calculations very closely. Truncation of the finite-difference calculation 
from 128 x 128 to 64 x 64 grid points has a significant effect on the results. Notice 
that it would be difficult to predict a priori that F64 has significant errors in the 
vorticity since the spectrum k2E(k)  of vorticity tapers off to zero as k increases 
even more rapidly than the enstrophy dissipation spectrum shown in figure l (d) .  
One of the most important conclusions from the accuracy comparisons of the 
present section is that the spectral results signal their accuracy or inaccuraoy 
through an inadequately resolved enstrophy dissipation spectrum ; on the other 
hand, finite-difference methods tend to misrepresent high wavenumber inter- 
actions so the results may look reasonable even when they are significantly in 
error. 

The stream function at  t = 2 with v = 0-005 is contoured in figure 3 using the 
results of Sl28.  Since the stream function is dominated by the largest scales of 
motion, the differences between S64, S128, F64 and P128 are quite small. The 
result illustrates another of our points: notions of accuracy depend strongly on 
what is being measured. F64 is quite adequate for obtaining accurate contours of 
the stream function, but it is not adequate for vorticity contours. 

Two major points have been illustrated by the comparison of runs with 

42 5 
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FIGVRE 2. Vorticity contours for (a) 5128, ( b )  864, (c )  F128 and (d) F64 a t  t = 2. Nomen- 
clature is explained in caption to figure 1.  Initial energy spectrum is (3.3), Y = 0.005 and 
RL(O) = 138. 

v = 0.005. First, spectral calculations are roughly equivalent in accuracy to 
finite-difference calculations with twice the resolution in each space direction. 
Second, the spectral results signal their accuracy and inaccuracy while the finite- 
difference results conspire to hide such inaccuracy. The first of these points is 
further illustrated by the results plotted in figure 4, which shows the enstrophy 
dissipation rate as a function of time for X128, S64, P i 2 8  and F64 when 
v = 0.0025. Besides illustrating the similar accuracy of S64 and F128 for this 
case, figure 4 shows that t = 2 is well into the evolution of these flows and that 
nonlinear interaction acts strongly to enhance the value of 7. (In the absence of 
nonlinear interaction 7 is monotonically decreasing as t increases.) 

The runs with v = 0.0025 and v = 0.001 illustrate these same two points even 
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FIGURE 3. Stream-function contours for run 8138 at t = 2. Initial energy is (3.3),  v = 0.005 
and RL(O) = 138. Nomenclature as in caption to figure 1.  

more dramatically. The enstrophy dissipation spectra for v = 0.0025 are shown 
in figure 5.  The analysis of these spectra follows closely the discussion given 
above for v = 0-005. Comparison of figure 5 (a) with figure 5 (b )  shows the remark- 
able result that, even though the enstrophy dissipation spectrum of S128 is 
beginning to show signs of a build-up in the highest wavenumber (and, hence, 
inadequate resolution of r ) ,  the enstrophy dissipation spectra of X64 and S l 2 8  are 
nearly identical for k < 14. Similarly, F128 is trustworthy only for k < 7, while 
F 6 4  is accurate only for k 6 3. The vorticity contours at  t = 2 with v = 0.0025 
are shown in figure 6. Although the enstrophy dissipation spectrum for S64 is 
rather poorly behaved near the cut-off, the prominent features of the vorticity 
contours for A64 reproduce rather well those of 8128 in both location and inten- 
sity. On the other hand, the contours of F128 are smooth and apparently well 
behaved, but they are in fact not very accurate; the enstrophy dissipation 
spectrum of F 6 4  does not signal disaster because it tapers off nicely as k increases, 
but in fact the contours of vorticity are quite inaccurate. 
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FIUURE 4. Enstrophy dissipation rate q(t) as a function of time for the four runs (a) 8128, 
( b )  864, ( G )  F128 and (d )  P64. Nomenclature as in caption t o  figure 1. Initial energy is 
(3.3), v = 0.0025 and RL(O) = 349. 

Enstrophy dissipation spectra for t = 2, v = 0.001 are presented in figure 7, 
while the corresponding vorticity contours are given in figure 8. Apparently, the 
enstrophy dissipation spectrum of S64 is accurate only for k < 13, while that of 
F128 is accurate only for k < 7. The similarity of the spectrum of figure 7 (a )  with 
that of figure 5 ( b )  suggests that the enstrophy dissipation spectrum of S128 is 
accurate for k 5 25, but this is a dangerous conclusion. These runs with v = 0.001 
are clearly at the limits of the ability of the present simulations to produce 
accurate results. 

The integral-scale Reynolds number RL for the run with v = 0.005 is approxi- 
mately 138 at t = 0; with v = 0.0025, RL N 349, while with v = 0.001, RL N 1184. 
At t = 2, the corresponding Reynolds numbers RL are 146, 345 and 900, 
respectively. We conclude that F64  is moderately accurate for RL 5 150, F128 
and 864 are moderately accurate for R, 5 350, and S128 is moderately accurate 
for RL 5 1100. On the other hand, Lilly (1971) used a scheme very similar to F64 
to calculate two-dimensional turbulence a t  R, = 315, 411 and 537. The spectra 
he obtained are similar to those given by F64 at the higher Reynolds numbers. 
This suggests that Lilly’s simulations may not be accurate and that the rapidly 
falling dissipative tail he found in the spectra produced by the finite-difference 
scheme is a false indication of accuracy. Deem & Zabusky (1971) used a scheme 
similar to that of F128 to obtain results at  R, M 2200. Again, we conclude that 
their simulation is unreliable a t  the small scales where they sought to identify 
properties of the inertial range. 
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FIGURE 5. Plot of k4E(k) ws. k for (a) 8128, ( b )  S64, (c )  F128 and (d) F64 at t = 2 .  Nomen- 
clature as in caption to figure 1. Initial energy spectrum is (3.3),  v = 0.0025 andRL(0) = 349. 

4. High Reynolds number numerical simulations 
In  this section, we address two questions. First, can the inertial range of two- 

dimensional turbulence be studied with the present simulations ? If not, what is a 
reasonable estimate of the resolution that will be required? Second, what are 
the prospects for the numerical simulation of very high Reynolds number 
turbulence in general ? 

The answer to the first question is definitely no. By definition, the enstrophy 
inertial range must contain a wavenumber below which lies most of the enstrophy 
of the flow and above which lies most of the enstrophy dissipation. If the energy 
spectrum obeys a power law in the inertial range then the power-law exponent 
must lie between - 5  and - 3  by these requirements. Thus, the enstrophy 
dissipation spectrum k4E(k) has a power-law exponent between - 1 and 1 in the 
inertial range. Now if we refer back to the simulations reported in 9 3, we con- 
cluded that S128 was but marginally accurate for all k whenv = 0.0025. However, 
it is evident from figure 5 (a )  that most enstrophy dissipation occurs for k < 20, 
so the inertial range must be confined to k< 20; it is clear that there are scant data 
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FIGURE 6. Vorticity contours for (a) 5128, (b) 564, (c) Pi28  and (d) P64 at t = 2. Nomen- 
clatureasincaption to figure 1. Initialenergyspectrumis (3.3), v = 0.0025andR~(O) = 349. 

to verify any inertial-range power law for Xi28 with v = 0.0025. We conclude that 
the present simulations cannot determine the correctness of theories of asym- 
ptotic two-dimensional inertial ranges. 

It was also inferred in $ 3  that Xi28 with v = 0.001 is possibly accurate for 
k 5 25, but certainly not beyond. The spectrum shown in figure 7(a)  has a 
substantial region where E ( k )  N k-4 for k 5 25. But, emphatically, we cannot 
conclude that the asymptotic inertial-range spectrum is k-4. Figure 9 compares 
the enstrophy dissipation spectrum depicted in figure 7 (a )  with the ( A  = 1) test- 
field model discussed in $§ 6 and 7. The initial conditions, viscosity and time of 
evolution for these curves match those for the simulations. The solid line has the 
same upper and lower wavenumber truncation as the X128 simulation, while the 
dashed line has an upper wavenumber truncation of k,,, = 128. (The effect of 
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FIGURE 8. Vorticity contours for (a) 8128, (b) 864, (c) 3'128 and (d) P64 at t = 2. 
Nomenclature as in caption to figure 1. Initial energy is (3.3), v = 0.001 and RL(O) = 1184. 
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FIGURE 9. Comparison of k 4 E ( k )  vs. 12. -, run S128; __ , test-field model with 
km,, = 63 [the same cut-off as Sl28) ; - - -, test-field model with km,, = 128. 

the wavenumber cut-off for the latter curve is negligible, since k4E(k) at Ic = 128 
has decreased by four orders of magnitude from its peak value.) Comparing the 
numerical experiment with the equivalent result of the test-field model, we see 
that there is close agreement over the entire spectrum range and, in particular, 
the curve from the test-field model reproduces the - 4 region of the spectrum. 
However, the asymptotic inertial-range spectrum for the test-field model goes not 
like k-4 but like k3 with a logarithmic correction (Leith & Kraichnan 1972). The 
present results differ from asymptotic form for at least three reasons: the finite 
high wavenumber truncation, depression of the high wavenumber spectrum by 
dissipation, and the non-localness for the dynamical interaction in wavenumber 
(Kraichnan 1971 b) .  

It is apparent from the comparisons of § 3 that the simulations with v = 0.001 
would be marginally accurate at  all scales with 256 x 256 spectral resolution; 
a simulation with 512 x 512 resolution might possibly permit observation of an 
inertial range. The calculations with a 512 x 512 spectral code are now underway. 

The second question posed at  the beginning of this section concerned more 
generally the prospects for simulations of very high Reynolds number turbulence. 
It may be shown from (2.13) that as RL increases the required spectral resolution 
grows like Re; the total number of modes must grow like RL. Also, it may be 
shown that the number of time steps required for the flow to evolve significantly 
grows like Re; consequently, the total work in each simulation grows like Rf,. If 
computers improve in efficiency by a factor of 1000, the maximum Reynolds 
number that can be simulated increases by a factor of about 100. Clearly, 
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extrapolation of these estimates to Reynolds numbers like those of the atmosphere 
suggests that direct numerical simulation is not economical by the present 
method. 

On the other hand, the results presented in 9 3 provide an intriguing possibility 
for avoiding the computing-time dilemma just encountered. Comparison of the 
contours of figures 2(a),  6 ( a )  and 8 ( a )  shows some remarkable resemblances. 
Apart from additional small eddy structures introduced as the Reynolds number 
increases, all three simulations using S128 are virtually identical. In other words, 
despite the variation of RL over a range of 7.5 from v = 0.005 to v = 0.001, the 
large-scale features of the flows are nearly identical; there is strong Reynolds 
number independence of the large-scale features of the flows. Examination of 
the enstrophy dissipation spectra in figures 1 (a ) ,  5 (a)  and 7 (a)  shows appreciable 
structural differences only for Ic > 10, so that we infer that wavenumbers k < 10 
are approximately Reynolds number independent over the range R, = 150-1 100. 

In summary, the suggestion that is being made is that it is not necessary to 
simulate high Reynolds number turbulence at high Reynolds number if one is 
only interested in wavenumbers k < k*, say. Rather, we suggest that it is only 
necessary to simulate a flow whose enstrophy dissipation spectrum peaks at  a 
wavenumber somewhat larger than k*, even though the Reynolds number of the 
latter flow may be several orders of magnitude less than that for the flow of 
interest. The wavenumbers k < k* should be Reynolds number independent. 
Clearly, this idea should be subjected to much closer scrutiny in the future. 

5. Formulation of statistical theory of two-dimensional turbulence 
The statistical theory of two-dimensional turbulence has been discussed in 

some detail by Kraichnan (1967) and Leith (1971). We refer the reader to these 
papers for a discussion of the physical mechanisms of energy transfer, and how it 
differs from three-dimensional turbulence. Our discussion here is confined to a 
brief statement of the equations of motion for the velocity covariances, according 
to the direct-interaction approximation and test-field model. 

We are interested here in determining the covariance 

U,j(k,t,t ') = (D/Zn)'(u,(k,t)uj( - k , t ' ) )  = (Sij-IC<ICj/k') U(k , t , t ' ) .  (5.1) 

The second equality in (5.1) follows from isotropy with U ( k ,  t ,  t ' )  given by (2.3). 
The equation in the direct-interaction approximation for the modal covariance U 
is (Kraichnan 1959) 

where 
(8/8t + vL2) U ( k ,  t ,  t ' )  = X(k,  t ,  t'), ( 5 4  

t' 
f lw, t ,  t ' )  = J A d P d v w , P ,  4)s 0 g(k ,  t ' , 8) U ( k ,  t ,  s) U ( P ,  t ,  8) 0% 

-JAdPdqB(k ,P ,  4 ) J i  0 U ( k ,  t', s) dP, t ,  s) U(4,  t ,  8 )  ds. (5.3) 

In  (5.3) W , P ,  4) = W ( k , P ,  4) + B ( k  %P)) (5.4) 

B( k, p ,  4) = ( Z/k') (k' - q2) (p' - q2) (1 - x')). (5.5) 

and, for two dimensions (Leith 1971), 

F L M  66 28 
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The symbol f, in the above equations indicates integration over all p and q 

such that k, p and q form a triangle, while x, y and z designate the cosines of the 
interior angles opposite the sides k, p and q respectively. In  (5.3) there also 
appears the modal decorrelation or Green's function g ( k ,  t ,  t') which describes 
relaxation of the modal intensity U ( k ,  t ,  t') under the joint action of turbulence 
and viscosity. Its equation is 

r 

with g(k, t', t ' )  = I .  

The equation for the energy spectrum E ( k ,  t )  = nkU(k ,  t ,  t )  follows from (5.2) 
and (5.3) by forming the equation for aU(k,  t', t) /at ' ,  adding the result to (5.2) and 
taking the limit t = t'. The result is (2.4), with 

T(E, t )  E 2nkS(k, t ,  t ) .  (5 .7 )  

We note that energy and enstrophy conservation as stated by (2.6) may be 
directly established from the structure of S(k ,  t ,  t ) ,  as given by (5.3). 

The test-field model may best be described, formally, as an abridgement and 
alteration of the direct-interaction approximation. The changes are as follows. 
First, retain (5.2) and (5.3) only for t = t ' . To evaluate the U ( k , t , s )  terms that 
occur on the right-hand side of (5.3) use the prescription 

U ( k , t , s )  = U ( k , t , t ) g ( k , t , s )  (t 2 8). (5.8) 

Next, replace the g equation (5.6) by 

(a/at + vk2) g(k ,  t ,  t') 
c n r  

where B T F M ( k , p ,  a)  = (1 - x2)-4 ( 1  - y2) (1 - 2') k2. 

Here, h is a parameter whose value is yet to be fixed. The result of the above 
changes is that the integral equations for U and G may be replaced by an 
equivalent set of ordinary differential equations, which greatly speeds up 
numerical computations as compared with those for the direct-interaction 
approximation, at  least for homogeneous flows. Moreover, these alterations 
produce a theory for which U(k,  t ,  t)  is properly invariant to random Galilean 
transformations, thereby leading to a theory which has a proper qualitative 
inertial-range structure. For motivations, rationale and further details see 
Kraichnan (1971a) and Leith & Kraichnan (1972). 

We note that the direct-interaction approximation is a complete, deductive 
approximation. No empirical constants enter (5.2) or (5.3) for the determination 
of U and from initial conditions U ( k ,  0,O). This is not true for the test-field model 
because of the parameter h entering (5.9). The choice h = 1 appears most natural 
in terms of the theoretical foundations of the model. However, this choice does 
not emerge uniquely from the theoretical analysis, and in the present paper we 
examine sensitivity to changes in A. 
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6. Comparison of computer simulations with theories 
Results for energy and transfer spectra 

Two initial energy spectra E(k, 0 )  are chosen to compare the theories with com- 
puter experiments. Spectrum I is 

E(k, 0) = 1 6 ( 2 / 7 ~ ) ~ v , 2 ( k / k , ) ~ k ; ~ e x p  (-Z(k/k,)2) (6.1) 

and spectrum I1 is given by (3.3). 
Values of the various integral length scales and Reynolds numbers defined in 

8 2, as well as v, and k,, are listed in table 1. Also given are values of the kinematic 
viscosity v, lower wavenumber cut-off how and the upper wavenumber cut-off kup. 
All nonlinear interactions which involve any wavenumber outside the range 
(klow, kUp) are discarded. Contributions to any spectral integral are likewise 
discarded exterior to this range. 

vo ko kiaw k ,  Y Rz I-' RL L-1 

I 1.0 8.0 1.0 63.0 0.0050 19.56 10.59 58.6 4.18 
I1 1.0 Q 1.0 63.0 0.0025 20.0 9.49 361.92 1.35 

TABLE 1 

Case I has low RL and moderate Rl, whereas case I1 has high RL and moderate 
Rl. We also note that according to (6.1) there is initially very little energy for 
k < k,, and k, = 8klow, so that €or case I there could be appreciable back transfer 
to  low wavenumbers. For case 11, ko = @low, so that in this case only a small 
range of wavenumbers is available for back transfer. 

Case I is used to assess the accuracy of the theories in treating back transfer to 
smaller wavenumbers, whereas case I1 is primarily used to study enstrophy 
cascade to large wavenumbers. As we shall shortly see, both cases exhibit rather 
strong nonlinear transfer. Simulation runs with smaller viscosities, but conditions 
otherwise the same as in cases I and 11, begin to show perceptible truncation errors 
in the enstrophy dissipation spectrum at large k. 

Our procedure in comparing theory and numerical simulation is to &st examine 
the time dependence of the integral quantities described in 6 4. We then examine 
the spectra of E(k ,  t ) ,  D(k,  t )  and T(k, t )  at some dynamically significant time into 
the decay ( t  = 0.8). 

RL(t)/RL(0) for case I. Figures 1 P 1 7  give the same integral quantities for case 11. 
They are defined in (2.7), (2.8), (2.14), (2.16) and (2.17). Initial values for these 
quantities are given in the figure captions. The figures compare two computer 
experiments (given by the points and the crosses) with the direct-interaction 
approximation (dotted lines) and the test-field model (with A = 0.65, solid lines, 
and A = 1, dot-dashed lines). The points enclosed in a circle or square shown in 
figures 10,12 and 13 represent values averaged over the two realizations, whereas 
the points and crosses are unaveraged computer-simulated values. The two com- 
puter simulations differ only in the particular Gaussian realization for the initial 

Figures 10-13 give Q ( t ) / W ) ,  n,(t)/D(O), r( t ) /r(O),  nBM/r(O), f l z ( t )  and 

28-2 
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FIGURE 10. Enstrophy n(t) [see (2.8)] and total energy back-transfer function 7 r ~ ( t )  [see 
(2.16)] as functions of time. n(t) is normalized by n(0) and xe( t )  by D(0).  ---, test-field 
model, A = 0.65; -.-, test-field model, A = 1; .. ., direct-interaction approximation; 0, 
computer-experiment values of D(t) averaged over two realizations ; 0, similarly averaged 
values of 7ig(t). Inltial energy spectrum is (6.1). Further parameters of run are given in 
table 1, case I. 
FIGURE 11. Enstrophy dissipation ~ ( t )  and total enstrophy forward-transfer np(t) [see 
(2.17)] as functions of time. Figure is normalized by ~(0). Curves show three theories as in 
figure 10. x , ~ ( t )  for a computer experiment; 0, averaged computer-experiment values of 
n ~ ( t )  for two numerical realizations of case I. Initial energy spectrum is (6.1).  Further para- 
meters of run are given in table 1, case I. 
FIGURE 12. Two-dimensional skewness factor s,(t) [see (2.15)] as a function of time for the 
three theories (curves, as in figure 10) and two computer experiments (points and crosses). 
Runs are for case I, whose initial energy spectrum is (6.1). For further details, see table 1. 

FIGURE 13. Integral-scale Reynolds number RL(~) /RL(O)  [ see(2.9)] as a function of time for 
case I. Curves depict the three theories as in figure 10. 0, averaged computer-experiment 
values. 
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FIGURE 14. Enstrophy n(t) [see (2.8)] and total energy back-transfer function n ~ ( t )  [see 
(2.16)] as functions of time. Q ( t )  is normalized by n(0) and n ~ ( t )  by D(0).  Curves show 
three theories as in figure 10. 0, computer-experiment values of D(t) averaged over two 
realizations; 0, similarly averaged values of n B ( t ) .  Initial energy spectrum is (3.3).  Further 
parameters of run are given in table 1, case 11. Note change of scale for n ~ ( t ) .  
FIGURE 15. Enstrophy dissipation ~ ( t )  and total enstrophy forward-transfer n ~ ( t )  [see 
(2.17)] as functions of time. Figure is normalized by ~ ( 0 ) .  Curves show three theories as in 
figure 10; x , 0, T ( t )  for two realizations of computer experiments; 0, averaged computer- 
experiment values of n ~ ( t ) .  Initial energy spectrum is (3.3). Further details of run are given 
in table 1, case 11. 

FIGURE 16. Two-dimensional skewness factor S,(t) [see (2.15)] as a function of time for the 
three theories (curves, as in figure lo), and two computer experiments (points and crosses). 
Runs are for case 11, whose initial energy spectrum is (3.3). For further details, see table 1, 
case 11. 
FIGURE 17. Integral-scale Reynolds number RL(~)/RL(O) [see (2.9)] as a function of time 
for cam 11. Curves depict the three theories as in figure 10, x , 0 ,  values for two computer 
experiments. 
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data, i.e. v(k, 0). The scatter in the points shown here is a measure of the statistical 
errors of the simulations. 

Before commenting on the accuracy of the theories and interpreting them 
relative to the simulations, it is of interest to describe briefly the physical 
significance of the general shapes of the curves given in these figures. For this 
purpose we recall that the initial statistical state of the system is multi-variate 
Gaussian. Hence the measures of transfer np(t) and n,(t) and the enstrophy 
skewness Sz(t), shown in figures 10-17, start at  zero. The build-up of higher-order 
statistical correlations is indicated by the rapid increase of S, from zero towards 
a saturation value of 0.4 and 0-6 for case I and I1 respectively. The fact that Sz(t) 
levels off implies that the decay at  large k becomes self-similar, after a correlation 
build-up time of about t N 0.6 for case I, and t N 0.4 for case 11. Another transient 
effect is the ' enstrophy dissipation enhancement' depicted in figures 11 and 15. 
The bulge in these curves is caused by a surge of energy towards higher wave- 
numbers, during the early time while the energy transfer function is increasing 
from zero. This effect is very similar to an equivalent dissipation enhancement 
for analogous three-dimensional turbulence calculations (Herring et al. 1973; 
Herring & Kraichnan 1972; Orszag & Patterson 1972). The decay of D(t)  and the 
decay of E(t) are monotonic, as they must be, because of inviscid energy and 
enstrophy conservation. The energy decay for both these cases (for 0 < ts 1) 
can be accurately predicted from pure viscous decay (though this is not true for 
the higher moments D(t) and ~ ( t ) ) .  

For both cases I and 11, RL(t) eventually becomes an increasing function oft. 
This behaviour for two-dimensional turbulence was predicted by Batchelor 
(1969), who argued that y ( t )  N t3, hence E(t) = A + Bt-l, for the asymptotic 
state of decaying two-dimensional turbulence. It follows then that 

RL(t) - ( A  +Bt-l) t. 

We next discuss the accuracy of the theories, considering first the direct- 
interaction approximation. The most striking feature of this theory discernible 
from figures 10-17 is its underestimation of energy transfer to large wavenumbers. 
This is apparent in figures 12 and 16 for the enstrophy skewness. For the low-R, 
case I, the degree of skewness underestimation is about a factor of two, while for 
the high-R, case I1 it is more like a factor of three. The underestimation is 
discernible to a lesser degree in the other figures although the predictions of the 
direct-interaction approximation for E(t) are accurate both for case I and case 11. 

On the other hand, the direct-interaction approximation fares best in the 
energy-containing region, particularly for case I. This is apparent in figures 10 
and 11, in which the gross measures of energy back transfer nB and enstrophy 
forward transfer nF are plotted. We note in figure 10 that the direct-interaction 
approximation is completely competitive with the test-field model in its prediction 
of the energy back transfer. Its prediction of the enstrophy transfer for case I is 
nearly as good as that of the test-field model. At higher Reynolds number, how- 
ever, this agreement even in the energy-containing region appears to deteriorate 
as is evident from figures 14 and 15. 

For the test-field model, the agreement with numerical simulations is much 
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better for all these figures, either for h = 1 or h = 0-65. The choice h = 0.65 
matches the computer experimental value of S2(t) for both case I and I1 slightly 
better than h = 1. On the other hand, h = 1 fits the D(t )  curve for case I1 better 
than h = 0.65. The value h = 0-65 was originally picked because it best matched 
the S2(t) data for case 11. The smaller value of h tends to give a better fit to the 
large-k data, whereas the larger h tends to fit the small-k region better. 

Figures 18-25 display spectra for E(k, t ) ,  k4E(k, t ) ,  T(k,  t )  and k2T(k, t )  for 
t = 0.8 for cases I and 11. Also shown in figures 18, 19, 22, and 23 are the initial 
spectra for E(k, 0 )  and E(k, 0)  k2 for comparison. The simulation points shown 
here are averages of the two separate runs. We consider first the ~ow-RL results 
depicted in figures 18-21. It is apparent from the E(k, 0.8) spectrum depicted in 
figure 18 that considerable back transfer has occurred during 0 < t < 0.8. E( 1, t )  
has increased during this time by a factor of 10. Both the direct-interaction 
approximation and test-field model are in good agreement with the simulations 
in the back-transfer spectral region (1 < k < 8). The direct-interaction approxi- 
mation appears to be slightly better in this region although rather large statistical 
scatter in the simulation prevents definite conclusions from being drawn as to 
which theory is superior. It may be thought that the good agreement between 
theory and simulation in the back-transfer region is accidental since this is a 
region of poor statistics for the simulation. This is not really true, however. Energy 
and enstrophy conservation (2.6) partially enforce the accuracy the simulation 
possesses at  larger k on smaller k. If there is little initial energy at  small k, as in 
case I, then most of the latter energy in these modes is transferred from higher k, 
where statistics are better. Figures 18 and 19 show the test-field model with 
h = 1 to be in excellent agreement with the numerical simulations over the full 
range of wavenumbers (1 < k < 63). The agreement with the test-field model 
with h = 0.65 is only slightIy inferior. On the other hand, the direct-interaction 
approximation agrees with the simulations for k < 25, but begins seriously to 
underestimate energy transfer for k > 25-30. 

A parenthetical comment with reference to figure 19 is perhaps appropriate 
at this point. We note that truncation errors in the simulations begin to manifest 
themselves at  large k at t 21 0-6, despite the smallness of the initial (and final) RL. 
The truncation error appears to increase with time and seriously affect the large-k 
behaviour of the enstrophy dissipation spectrum for t 2 1.2. Hence, there are 
difficulties in simulating two-dimensional turbulence even for low RL. 

Transfer spectra T(k, t )  and k2T(k, t )  are presented in figures 20 and 21 for 
caBe I. The rather large scatter in the computer-experiment data, particularly at  
low k, is sufficient to prevent us from commenting further on the relative accuracy 
of the theories for these transfer quantities, except to note that the prediction of 
the direct-interaction approximation for energy transfer near the maximum 
(or minimum) transfer is somewhat too small. Note that theories and simulation 
are in accord in predicting very small energy transfer rates over most of the range 
of k where the enstrophy dissipation is strong. This qualitative behaviour is in 
accord with theoretical notions (Kraichnan 1967) for large-R, turbulence. 

The spectra for case11 are presented in figures 22-25. The computer-experiment 
energy spectrum shown in figure 20 is in good agreement with the test-field model 
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FIGURE 18. Comparison of computer-experiment energy spectrum (points) at t = 0.8 with 
the three theories (curves, as in figure 10) for case I (see table 1 for specification of case I). 
--- , initial theoretical energy spectrum. 

FIGURE 19. Comparison of computer-experiment enstrophy dissipation spectrum (points) 
a t  t = 0.8 with the three theories (curves, as in figure 10) for cam I (see table 1 for 
specification of case I). - - -, initial spectrum. 

FIGURE 20. Comparison of computer-experiment energy transfer spectrum T ( k )  (points) 
with the three theories (curves, as in figure 10) for case I (see table 1). Note change of 
k-scale as compared with figure 21. 

FIGURE 21. Comparison of computer-experiment enstrophy transfer spectrum k2T( k )  
(points) with the three theories (curves, as in figure 10) a t  t = 0.8 for case I (see table 1). 

with h = 1 over most of the wavenumber range considered. However, we should 
note that the agreement between theory and computer experiments has deterio- 
rated from that for case I. The theory (for both h = 1 and h = 0.65) overestimates 
energy transfer a t  the highest wavenumbers considered. We again note that the 
direct-interaction approximation yields satisfactory energy spectra in the 
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FIGURE 22. Comparison of computer-experiment energy spectrum (points) with the three 
theories (curves, as in figure 10) a t  t = 0.8 for case I1 (see table 1). - - -, initial theoretical 
energy spectrum. 

FIGURE 23. Comparison of computer-experiment enstrophy dissipation spectrum (points) 
with the three theories (curves, as in figure 10) a t  t = 0.8 for case I1 (see table 1). 

FIGURE 24. Comparison of computer-experiment energy transfer spectrum T ( k )  [point, see 
(2.4)] with the three theories (curves, as in figure 10) a t  t = 0.8 for case I1 (see table 1). Note 
change of k-scale as compared with figure 21. 

FIGURE 25. Comparison of computer-experiment enstrophy transfer spectrum k2T(k)  
(points) with the three theories (curves, as in figure 10) at t = 0-8 for case I1 (see table 1). 

energy-containing region but poor results in the enstrophy range, according to 
figure 23. It is of interest to note that neither simulation nor theory gives a k-3 

range. We have noted elsewhere that this value of RL is too small to expect such 
an enstrophy-based inertial range. 

The transfer spectra T(k,  0.8) and k2T(k, 0.8) are shown in figures 24 and 25. 
As for case I, we note the large scatter in the computer-experiment points. The 
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test-field model with h = 1 again appears to be in satisfactory accord with the 
computer simulations. In  this case, the energy transfer is extremely small, as 
compared with its value for case I depicted in figure 20, throughout the enstrophy 
dissipation range. 

7. Concluding remarks 
The close agreement between the computer simulations and the test-field model 

suggests that both give good approximations to the spectral evolution of two- 
dimensional turbulence in the Reynolds number range which has been examined. 
The wavenumber-range truncation at  k = 64 appears to cause substantial error 
only in the tail of the enstrophy dissipation curve at  the highest Reynolds 
numbers treated, and here this error does not appreciably affect the total range 
of enstrophy dissipation. 

The test-field model fits the computer experiments well both for h = 1 and 
h = 0.65, and the model does not display much sensitivity to the value of this 
parameter. The value h = 1 works well also in three-dimensional calculations 
both a t  high and low Reynolds numbers (Kraichnan 1971 b;  Herring & Kraichnan 
1972). The direct-interaction approximation underestimates enstrophy transfer 
at high wavenumbers and consequently poorly represents the enstrophy dissipa- 
tion curves. However, it appears to give an adequate approximation to the back 
transfer of energy to lower wavenumbers and to the total rate of transfer of 
enstrophy to higher wavenumbers, with deterioration in the accuracy of the 
latter quantity showing at the highest Reynolds numbers examined. 

The inaccuracy of the direct-interaction approximation for the high wave- 
number transfer may be traced to a fundamental inadequacy of the approxima- 
tion in sorting out the dynamical effects of intrinsic distortion of small-scale 
structures from the effects of simple convection of these structures by the large- 
scale velocity field (Kraichnan 1964). When both effects are present, the build-up 
of energy- and enstrophy-transferring triple correlations according to the direct- 
interaction approximation is limited by the convective decorrelation time rather 
than the physically relevant, and longer, characteristic time for internal distor- 
tion. This may be described formally as a lack of invariance of the transfer to 
random Galilean transformation (Kraichnan 1964). The effect is more severe in 
two dimensions than in three because the asymptotic spectrum in the enstrophy- 
transferring inertial range falls off more steeply, so that there is a greater 
difference, at  small scales, between convective and internal decorrelation times. 
I n  the test-field model, Galilean invariance is restored by altering the direct- 
interaction approximation so that the build-up of triple correlations is deter- 
mined by an intrinsically Galilean-invariant characteristic time, associated with 
pressure fluctuations. 

The abridged Lagrangian-history direct-interaction approximation (Kraichnan 
1966) combines the Galilean-invariance properties of the test-field model with 
the total absence of arbitrary constants displayed by the direct-interaction 
approximation. This is achieved at the cost of substantial added complication. 
We have also compared this approximation with the computer experiments, and 
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it appears to be fully competitive in accuracy with the test-field model with 
A = 1. Detailed results will be presented in a later paper. 

In conclusion, we should like to call attention again to the demonstration in 
5 4 that asymptotic inertial-range power laws cannot be inferred from computer 
experiments in the wavenumber and Reynolds number ranges considered here. 
The apparent k4 inertial range exhibited by the computer experiment in 
figure 6 (a)  was perfectly mimicked by the results of the test-field model for the 
same case, despite the fact that the test-field model yields asymptotically a 
log-corrected k-3 inertial range. In  contrast, the numerical experiments using the 
spectral method show a remarkable Reynolds number and truncation inde- 
pendence of the dynamics of the large-scale enstrophy-containing eddies. 
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